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In recent years, interest has grown in using classroom observation 

as a means to several ends, including teacher development, teacher 

evaluation, and impact evaluation of classroom-based interven-

tions. Although education practitioners and researchers have 

developed numerous observational instruments for these pur-

poses, many developers fail to specify important criteria regarding 

instrument use. In this article, the authors argue that for classroom 

observation to succeed in its aims, improved observational systems 

must be developed. These systems should include not only obser-

vational instruments but also scoring designs capable of producing 

reliable and cost-efficient scores and processes for rater recruit-

ment, training, and certification. To illustrate how such a system 

might be developed and improved, the authors provide an empirical 

example that applies generalizability theory to data from a mathe-

matics observational instrument.

Keywords: classroom research; measurements; observational 

research; policy; policy analysis; teacher assessment

Accumulated research evidence over the past two decades 
has shown that teachers matter for student learning 
(Nye, Konstantopoulos, & Hedges, 2004; Rockoff, 

2004; Rowan, Correnti, & Miller, 2002; Teddlie & Reynolds, 
2000). In fact, teacher effects typically explain a higher percent-
age of variance in student achievement than do school- and  
system-level factors (Scheerens & Bosker, 1997). For instance, 
Gordon, Kane, and Staiger (2006) showed that, net of student 
demographic characteristics and baseline scores, the average  
difference for students assigned a top-quartile versus bottom-
quartile teacher is 10 percentile points. Examining teacher effects 
over a period of four consecutive years, Kyriakides and Creemers 
(2008) suggested that, cumulatively, teacher effects can explain 
up to 34% of the variance in student achievement. Given these 
results, it is not surprising that interest in measuring teacher  
quality has grown. In particular, reformers have proposed class-
room observation as a means to several ends, including teacher 

development, teacher evaluation, and impact evaluation of  
classroom-based interventions.

However, current rhetoric tends to characterize measures of 
teacher quality, including classroom observations, as if only 
“true” teacher quality affects teachers’ ratings. This is despite the 
fact that researchers have widely documented the multiple 
sources of variance in observational scores due to the sampling of 
lessons, differences among raters, and even the characteristics of 
the observational instrument itself. In an era that will undoubt-
edly see major expansion in the number and use of observational 
instruments, practitioners and researchers alike need to more 
carefully examine the sources of variation in observational scores 
and to consider their implications for how these ratings are used.

To this end, we highlight important issues in measuring  
teaching—and by extension, teacher—quality. We argue that 
major instrument developers—including states, researchers, and 
other nongovernmental entities—must go beyond simply writ-
ing instruments; they must create observational systems in which 
quality observational instruments, well-trained raters, and robust 
scoring designs are combined to produce reliable teacher scores. 
Key decisions during instrument development include determin-
ing which items to remove or modify and identifying an optimal 
number of items to measure intended constructs. Key decisions 
pertaining to raters include consideration of their initial qualifi-
cations, training, and certification. Key decisions in developing a 
scoring design include determining the intended use of scores 
and the most cost-effective combination of lessons, and raters per 
lesson, to arrive at the desired score reliability.

We argue that generalizability theory (Brennan, 2001; 
Cronbach, Gleser, Nanda, & Rajaratnam, 1972; Marcoulides, 
1989; Shavelson & Webb, 1991) can assist in the design of cost-
efficient systems that produce reliable scores. Generalizability 
theory provides a comprehensive framework for making judg-
ments about the multiple elements of observational systems, 
something that often-reported interrater agreement measures 
cannot do. Additionally, generalizability theory can provide 
empirical evidence regarding the optimal number of raters and 
lessons required to produce desired reliabilities, rather than 
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grounding such choices in “common practice.” To support this 
claim, we provide an illustration by describing a generalizability 
study conducted for the Mathematical Quality of Instruction 
(MQI), an instrument for measuring mathematics instruction.

Existing and Planned Practice in Instructional 
Observation

The United States boasts a long history of efforts to measure 
teacher and teaching quality, including, in various eras, examina-
tions of subject matter knowledge, teaching portfolios, and value-
added scores. One constant, however, has been observation-based 
evaluations of teacher effectiveness, typically conducted by a 
principal or another administrator. In recent years, researchers 
and policy makers have pushed for reforms to these observation-
based evaluations. The publication of the New Teacher Project’s 
report describing weak existing district teacher evaluation prac-
tices (Weisberg, Sexton, Mulhern, & Keeling, 2009) and compe-
tition among states to win Race to the Top (RTTT) funds 
comprised two sources of pressure toward reform. Another source 
relates to the Gates Foundation–funded Measures of Effective 
Teaching project, which has advocated for the use of multiple and 
rigorous measures in teacher evaluation (Measures of Effective 
Teaching, n.d.). These different sources of pressure have resulted 
in a large number of states—including New York, Florida, 
Maryland, Georgia, and Tennessee—making significant revisions 
to their practices around teacher observation.

Given this new policy environment, we emphasize in this 
article the importance of observational systems, which we define 
as a collection of elements that together produce scores represent-
ing individual teachers’ instructional quality. These elements 
include the observational instrument itself, the set of raters 
recruited or available to conduct the observations, rater training 
and certification, and the scoring design used. A scoring design 
consists of specifications regarding the number and length of 
observations to be collected per teacher, the number of raters per 
observation, and certification or other rater requirements.

Although these latter elements might be seen as merely logisti-
cal details to be negotiated with stakeholders once an observational 
instrument has been adopted, decisions regarding raters and scor-
ing designs have important consequences for the reliability of 
teachers’ scores. This is because in addition to actual teaching qual-
ity, teacher scores are influenced by other aspects of the instruc-
tional environment, including the curriculum and content covered 
during observed lessons, the students assigned to the class, the 
degree to which raters (observers) agree about what they see, and 
random variation (see, e.g., Kennedy, 2010). Although several of 
these sources of variation can be addressed in the design of an 
observational system, a review of extant and planned observational 
systems suggests that many are being overlooked.

Consider, for instance, raters. An informal online poll of state 
officials engaged in teacher evaluation reform (National Center 
for Teacher Effectiveness, 2011) suggests that many states intend 
to rely exclusively on principals to conduct observations. This 
reliance on principals as raters makes it nearly impossible to 
exclude individuals who are using the observational instrument 
in unintended or inconsistent ways; it also preserves existing 
practices in which only one rater evaluates each teacher.1 In addi-
tion, we suspect that the use of principals as raters may affirm the 

institutionalization of a process that many teachers describe as ad 
hoc and unsystematic (Johnson, 1990; Peterson, 1987, 2000) 
and also may cause rater quality and score reliability to continue 
to remain unexamined or unreported, as is currently the norm.

Further, we observe that when rater quality is examined, many 
practitioners (and researchers) report only rater agreement levels 
with one another—that is, interrater reliability (see, e.g., 
Heneman & Milanowski, 2003, about Cincinnati; Sartain, 
Stoelinga, & Brown, 2009, about Chicago). Yet even strong rater 
agreement, typically expressed in statements such as “the raters’ 
scores match 80% of the time or more,” does not assure the con-
sistency of teacher scores and may even mask problems with the 
data. This occurs because rater agreement levels are influenced by 
the number of points on a rating scale, the frequency of target 
behaviors in classroom teaching, and chance agreement. More 
important, however, rater agreement rates attend to only one 
source of variation—the rater—leaving unstudied other sources 
of variation (e.g., lessons) that affect the consistency of teacher 
scores (see Brennan, 2011, and Marcoulides, 1989, for longer 
discussions). This metric also fails to estimate interactions 
between raters, teachers, and lessons—whether, for instance, 
some raters may be harsher with certain groups of teachers or 
whether the prevalence of raters’ scores varying by specific lesson 
content suggests the use of multiple raters per lesson. As a result, 
despite their common use, rater agreement rates do not provide 
a comprehensive picture of the reliability of scores generated 
from observational systems.

Similar issues exist around decisions about the number of 
observations appropriate for producing teacher scores. Current 
practices appear limited to one or two observations per teacher 
per year (Weisburg et al., 2009), and evidence suggests that states 
have made variable decisions about the number of observations 
required in their newly designed systems. For example, Tennessee 
intends to require four observations per year for tenured teachers 
(National Center for Teacher Effectiveness, 2011), whereas new 
legislation in Louisiana requires only one per year (Louisiana Act 
54, 2010); in neither case is there evidence that states generated 
these numbers via scientific study. If either the content of the 
lesson observed or day-specific random variation (e.g., students 
are distracted by an upcoming sporting event) exert a strong 
influence on teacher scores, one, two, or even four lessons may 
not be enough to arrive at the level of reliability needed to inform 
high-stakes decisions. We also know from anecdotal evidence 
that principals may be pressed for time and thus “sample,” in a 
sense, a half hour from a lesson before moving onto their next 
responsibility. If the reliability of teacher scores is not affected by 
this sampling, then, at least from a measurement perspective, it is 
a smart strategy. However, if principals are systematically missing 
important aspects of instruction because of this time-saving 
approach, their ratings might not consistently capture the overall 
quality of instruction occurring in the classroom.

Two other issues around the design of observational systems 
are important to highlight. The first pertains to questions regard-
ing the design and/or adoption of an observational instrument. 
The number of items2 on an instrument—and by extension, the 
cognitive load for raters—is one example of such a design ques-
tion. For instance, the Framework for Teaching, a commonly 
used observational instrument, has 76 indicators grouped 

 at Harvard Libraries on March 16, 2012http://er.aera.netDownloaded from 

http://er.aera.net


educational ReseaRcheR58

beneath 22 actual items for observers to track (Danielson Group, 
2011). Other instruments, such the Tennessee observation 
framework (Tennessee Department of Education, 2011; 14 indi-
cators grouped beneath 6 items) and the Boston teacher evalua-
tion instrument (Boston Public Schools, 2010; 44 indicators 
grouped beneath 6 items), contain fewer. Despite such variability, 
we found no studies of how the quantity of items on an instru-
ment might affect raters’ performance and consequently the char-
acteristics of the resulting teacher scores.

Second, although RTTT regulations suggest that overall eval-
uation scores should inform performance rewards, promotion, 
retention, and the tenure process, policy makers are not provided 
with details about how these scores should be constructed. These 
details, however, have important consequences for scoring 
designs and estimated score reliability. If absolute decisions are 
made regarding teacher efficacy—for example, comparing unten-
ured teachers against a criterion of effectiveness—a scoring design 
with more raters per lesson and/or observations per teacher will 
be required. However, if the intent is to compare teachers with 
one another—for instance, to eliminate the bottom 10% of  
performers—less intensive data collection and scoring will typi-
cally be required (see Shavelson & Webb, 1991, pp. 84–87, for 
an explanation on which variance components are incorporated 
into the calculation of the absolute-decision and the relative-
decision reliability indices).

In sum, based on existing and planned practice, we suspect 
that instrument developers have paid little attention to how deci-
sions about the design of their observational systems will affect 
the reliability and validity of the resulting teacher scores. In this 
article, we focus in particular on the reliability of such scores, 
leaving a discussion of validity (e.g., rater accuracy, the impact of 
instrument or scoring designs on correlations with “true” teach-
ing quality or student learning) for another venue. For reliability, 
there exists a well-established framework, generalizability theory, 
which allows us to examine the multiple influences on score reli-
ability within a single analysis (Brennan, 2001; Cronbach et al., 
1972; Shavelson & Webb, 1991). Generalizability studies, or 
G-studies, decompose variability in teacher scores into different 
components (e.g., teachers, lessons, and raters), their interac-
tions, and measurement error. This partitioning of variance can 
inform decisions regarding the improvement of the instrument 
or raters’ training on particular aspects of the instrument. Using 
information from G-studies, instrument developers can then 
conduct decision-type studies (D-studies) to identify the optimal 
data collection and scoring designs for a desired score reliability.

An Example: Developing the MQI Observational 
System

Study Design

To illustrate how this might occur, we describe a G-study and a 
series of D-studies conducted for the MQI instrument. The MQI 
is designed to provide information about teachers’ enactment  
of mathematics instruction. Three of its major dimensions are  
the richness of the mathematics (Richness), teacher errors and 
imprecision (Errors and Imprecision), and student participation 
in mathematical meaning making and reasoning (SPMMR;  
see the appendix). The MQI was designed to provide both a  

multidimensional and a balanced view of mathematics instruc-
tion and is currently intended for use with videotaped lessons of 
classroom mathematics instruction (Hill et al., 2008; Learning 
Mathematics for Teaching Project, 2011). Although the MQI is 
designed as a measure of teaching quality rather than teacher qual-
ity, we view teaching quality as a critical element in teacher qual-
ity; good teachers typically teach well.

Because the MQI was intended to yield estimates of instruc-
tional quality for individual teachers, we faced several questions 
regarding instrument and scoring design. Most important, we 
needed to determine whether the instrument could meet target 
score reliabilities under specific designs; we also needed to esti-
mate the most cost-effective means for collecting and scoring les-
sons. These challenges are similar to those any state or other 
major instrument developer might face as it moves from an initial 
phase of testing to wide-scale use in teacher evaluation. We also 
wanted to estimate the characteristics of the instrument under 
“real” district conditions, including using one rater per teacher, 
capturing only one or two lessons per year, and allowing for  
the possibility that a given rater will watch only part of a  
lesson. Finally, we sought to examine how using scores to make 
absolute versus relative decisions affects estimated score reliability 
and, consequently, recommended scoring design requirements. 
Although we demonstrate these issues by using a small study 
designed to improve a mathematics instrument, we expect that 
our analyses might inspire states and other instrument developers 
to undertake more rigorous studies of their higher stakes instru-
ments.

A first step in our process was to sample teachers, lessons, and 
raters. From a pool of 24 middle school teachers participating in 
a related study, we sampled 8 who represented different levels of 
mathematical knowledge of teaching (see Hill, Umland, & 
Kapitula, 2011). Because in previous studies (e.g., Hill et al., 
2008) we found teacher knowledge to be positively related to the 
quality of teacher instruction, we expected notable variations in 
teachers’ MQI scores—an optimal feature of G-study analysis. 
From the six videotaped lessons available per teacher, we sampled 
three that contained between six and eight 7.5-minute segments. 
The segment length was set based on prior raters’ feedback that 
segments greater than 7.5 minutes were difficult to score. Sampling 
lessons with six to eight segments increased comparability.

To form a rater pool, we recruited 10 graduate students and 
former teachers who each attended a two-day training session on 
the instrument. At the conclusion of the training, raters took a 
certification examination, which asked them to rate 16 segments 
from four different lessons taught by four different teachers; the 
segments were purposefully selected to represent a wide range of 
instructional quality. To determine rater inclusion, we set a cut 
score of 0.20 average absolute deviations from the master score; 
this corresponded to rater scores that were off by 1 point from the 
master score 40% of the time or off by 2 points 20% of the time. 
This criterion excluded 1 rater, and thus the findings reported 
below are based on the scores of the remaining 9 raters. We note 
that had we been a state or district that required principals to 
serve as raters by design, we could neither set a certification cut 
score nor exclude any rater.

Each of the nine individuals assigned scores of low, medium, 
or high (1, 2, or 3) for every item for each segment within our 
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sample of 24 lessons (eight teachers with three lessons each). To 
analyze the data, we first aggregated the segment scores to the 
lesson level, based on the view that most mathematics classes 
feature purposeful differences in instructional methods as the 
teacher interacts with students through different phases of the 
lesson. Although one segment may intentionally feature high 
mathematical richness, for instance, another may intentionally 
feature the reverse as students practice a familiar procedure for 
skill proficiency.

Using these data, we then conducted a G-study to determine 
the variance components attributable to teachers, lessons, and 
raters; their two-way interactions; and the combination of the 
three-way interaction and the measurement error. We calculated 
these variance components for each of the individual MQI items 
and each MQI dimension. In the latter case, we did so in two 
ways. First, we averaged the items that pertained to a given 
dimension (Column VI in Table 1 and Column IV in Tables 2 
and 3; e.g., for “average richness,” items included representations, 
multiple solution procedures/solutions, explanations, developing 
generalizations, and mathematical language). We averaged across 
items because of our views about these dimensions3 and because 
an exploratory factor analysis showed the items clustered in three 
groups corresponding to the MQI dimensions. Second, we par-
titioned the variance for a “holistic” item for each dimension; 

these holistic items allowed raters to use item-specific informa-
tion but also to exercise more judgment in assigning a score (see 
the appendix and Tables 1–3 for details). In fact, a question for 
this G-study was whether the holistic score could achieve a simi-
lar level of reliability as the average of the more specific items that 
comprise a dimension.

Given these decisions, we chose to analyze our data using a 
G-study design where lessons were nested within teachers and 
crossed with raters.4 We considered lessons to be nested within 
teachers (as opposed to being crossed) because, unlike typical 
designs in which participants are administered exactly the same 
items on an examination, our participants were not expected to 
teach exactly the same lessons (see Erlich & Borich, 1979, p. 12, 
for a similar discussion). Because we averaged across items, items 
were not considered a facet in our analysis; we acknowledge, 
however, that alternative specifications of the model (e.g., items 
as fixed facets) are possible.

Before presenting our findings, we pause to note that the data 
used in our analysis were not collected with the intent of shaping 
the instrument’s use in high-stakes teacher evaluation but rather 
were intended to help us refine the MQI for research and teacher 
development purposes. Thus the analysis described below does 
not provide a template for inquiries into the properties of teach-
ers’ scores for use in formal evaluations; to do so, states or  

Table 1
Variance Decomposition for the Richness Dimension of the Mathematical Quality of Instruction Instrument

                                                     Individual Items     Overall Richness

(I) (II) (III) (IV) (V) (VI) (VII)

Source of Variation Representations

Multiple 
Solution 

Procedures/
Solutions Explanations

Developing 
Generalizations

Mathematical 
Language

Average of 
Items (I)–(V) Holistic

Teachers (t) 0.97 34.61 22.01 0.00 41.55 42.52 45.70
Lessons:teachers (l:t) 20.24 28.00 12.01 23.94 16.99 10.52 2.76
Raters (r) 9.14 2.61 21.48 7.61 4.99 6.17 13.96
Teachers × Raters  

(t × r)
0.00 0.00 8.52 13.12 3.64 7.83 3.27

Residual [(l:t) × r, e] 69.65 34.78 35.99 55.33 32.83 32.97 34.31
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Note. Cells represent the percentage of variance explained by different facets in a generalizability study.

Table 2
Variance Decomposition for the Errors and Imprecision Dimension of the Mathematical  

Quality of Instruction Instrument

Individual Items Overall Errors and Imprecisions

(I) (II) (III) (IV) (V)

Major Errors
Notation and 

Language Lack of Clarity
Average of Items  

(I)–(III) Holistic

Teachers (t) 13.11 31.23 21.12 31.88 36.04
Lessons:teachers (l:t) 5.90 7.22 11.71 8.81 3.20
Raters (r) 2.59 10.72 9.53 13.04 13.51
Teachers × Raters (t × r) 14.35 5.62 1.61 6.45 5.26
Residual [(l:t) × r, e] 64.04 45.21 56.03 39.82 41.99
Total 100.00 100.00 100.00 100.00 100.00

Note. Cells represent the percentage of variance explained by different facets in a generalizability study.
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Table 3
Variance Decomposition for the Student Participation in Meaning Making and Reasoning (SPMMR) Dimension of the 

Mathematical Quality of Instruction Instrument

 Individual Items                  Overall SPMMR

(I) (II) (III) (IV) (V)

Student  
Explanations

Student  
Questioning and 

Reasoning
Enacted Task  

Demand
Average of  

Items (I)–(III) Holistic

Teachers (t) 17.77 14.16 21.96 32.78 27.11
Lessons:teachers (l:t) 39.81 11.74 6.09 7.22 2.09
Raters (r) 10.71 33.10 24.19 28.58 27.12
Teachers × Raters (t × r) 2.26 0.05 1.23 0.00 2.48
Residual [(l:t) × r, e] 29.45 40.94 46.52 31.43 41.19
Total 100.00 100.00 100.00 100.00 100.00

Note. Cells represent the percentage of variance explained by different facets in a generalizability study.

other instrument developers would undoubtedly want to work 
with a larger sample of teachers and conduct random sampling of 
teachers, lessons, and raters from the grades and districts affected 
by the observation instrument. Nevertheless, the findings pre-
sented below can be thought of as an illustration of the affor-
dances of G-Theory in uncovering issues pertaining to the design 
and improvement of observational systems.

Generalizability Study Results

We began our analysis by decomposing the variance in teacher 
scores on specific items of the MQI (see Tables 1–3); this informa-
tion can help inform the refinement of an observational instru-
ment. Specifically for Richness, two items—representations and 
developing generalizations—exhibited negligible teacher-level 
variation; instead, a notable portion of the variance appeared to 
lie between lessons within teachers (i.e., teachers would feature 
these elements in one lesson but not in another) or appeared as 
measurement error. Based on raters’ reports of its difficulty to 
score, we chose to drop the item corresponding to representations 
from the instrument and to rewrite the developing generaliza-
tions item. Table 1 also shows that the estimated variance attrib-
utable to raters for the mathematical explanations item was large 
relative to other items, implying differences in raters’ interpreta-
tion and use of mathematical explanations. This issue also sur-
faced in follow-up interviews, where raters did appear to have 
differing interpretations of the item. Training for this item was 
changed to address these inconsistencies.

Tables 1–3 also display the two more global estimates 
described above: the average of dimension-specific items (e.g., 
Column VI, an average of the five items of Richness in Table 1) 
and the holistic judgment made about the segment for each 
dimension. As shown, the variance components associated  
with teachers were higher for the dimension averages compared 
with those of the specific items within the dimension. Further, 
Tables 1–3 demonstrate that the average and holistic scores 
yielded roughly comparable teacher-level variances, especially  
for Richness. Although scores on specific items necessarily 
informed raters’ overall judgments, this finding appears to be 
promising, for if raters can arrive at an overall judgment using a 
shorter instrument, this would result in a substantial reduction in 

scoring time and thus costs. We note, however, that a more rigor-
ous test of this would be to compare dimension-average scores 
with holistic scores obtained without asking the raters to first 
score each individual item of a dimension, something we are cur-
rently exploring in a new G-study.

As suggested above, results from our G-study provided infor-
mation that the interrater agreement estimates alone did not. For 
instance, representations and mathematical language had 69% 
and 55% agreement rates, respectively—not a tremendous differ-
ence and well below the conventional 80% threshold. Yet these 
two items performed remarkably differently in the G-study. 
Although a relatively small portion of the variance (i.e., less than 
10%) was attributed to raters in both cases, the portion of vari-
ance attributed to teachers was notably different: less than 1% for 
representations, and a little more than 40% for mathematical 
language. As noted, representations was dropped, whereas math-
ematical language was the strongest specific item within the 
dimension. Similarly, major errors and developing generaliza-
tions had the first- and second-highest level of interrater agree-
ment (85% and 83%, respectively), yet the G-study indicated 
that very little of the variance in scores was attributable to teach-
ers for these items. These high agreement rates likely occurred 
because of the scarcity of such behaviors during instruction—in 
other words, most of the matches were probably due to raters 
indicating that the element did not occur. These examples high-
light the fact that developers who use only interrater reliability to 
investigate the integrity of their instrument miss critical informa-
tion and, in fact, may mask limitations of the instrument. To see 
the bigger picture, a G-study must be conducted.

Design Study Results

Next, we used the information generated by the G-study to help 
delineate two important aspects of the scoring design: the num-
ber of raters needed per lesson and the number of lessons per 
teacher required to achieve acceptable reliability. To do so, we 
entered the estimates for the dimension-average scores (Column 
VI in Table 1 and Column IV in Tables 2 and 3) into a series of 
D-studies. In what follows, we start by reporting estimates of 
relative reliability (r values, which correspond to the generaliz-
ability coefficient, or G-coefficient) because districts often make 
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or plan to make relative rather than absolute decisions about 
teachers, such as laying off the lowest 5% of teachers due to bud-
get shortfalls or rewarding the top 5% with merit pay. We then 
move to a discussion of how estimating absolute reliability (ϕ, the 
index of dependability coefficient) would affect our design. 
Figures 1–3 display the results of this analysis for each of the  
three dimensions. We assume for the sake of illustration that the 
variance components from our videotaped observations are simi-
lar to those that would be obtained through live observations, 
although this remains an important empirical question for fur-
ther research.

Assuming a scoring design of quarterly observations of teach-
ers by an MQI trained and certified principal (one rater, four 
lessons), we estimated the reliability of teacher scores to be  

0.69, 0.63, and 0.77 for Richness, Errors and Imprecision, and 
SPMMR, respectively. For a more typical scoring design of two 
observations per year by a principal, our data indicate that the 
MQI would return estimated reliabilities of 0.59, 0.51, and 0.63. 
This finding suggests that using the MQI instrument with typi-
cal scoring designs would produce scores that are not sufficiently 
reliable to support the decisions desired by current policy propos-
als. Based on the similarity of our results to others in the field 
(e.g., Newton, 2010), we suspect the same will be true of other 
observational systems that employ scoring designs with a single 
rater and few observations.

Using Figures 1–3, we next sought to identify an optimal scor-
ing design by examining how much the estimated reliability of 
teacher scores improves relative to the “costs” of adding lessons 
and/or raters. We assumed a fixed unit cost per lesson collected 
and scored. Figures 1–3 demonstrate the diminishing marginal 
returns to reliability for both lessons (smaller gaps between 
curves) and raters (decreases in slope) across each dimension. In 
particular, adding a fourth lesson appears to increase the esti-
mated reliability of teacher scores by only a marginal amount. 
The figures also show that adding a second rater to each lesson 
markedly improves estimated teacher score reliability. Thus, we 
identify the three lesson–two rater combination as an optimal 
combination for research purposes, with estimated teacher score 
reliabilities for Richness, Errors and Imprecision, and SPMMR 
of 0.77, 0.71, and 0.81, respectively. We note that under other 
logistics and budget assumptions, a different combination may 
be optimal and that D-studies are designed to provide precisely 
this information.

We then examined the effect on score reliability of watching 
only the first 30 minutes (four segments) of a lesson rather than 
the entire period, something that principals might do when 
pressed for time or researchers might do if pressed for resources. 
As shown in Table 4, the estimated reliabilities for Richness  
and for Errors and Imprecision remain largely unchanged. By 

FIGURE 1. Richness: the reliability of different combinations of 
raters and lessons.

FIGURE 2. Errors and Imprecision: the reliability of different 
combinations of raters and lessons.

FIGURE 3. Student Participation in Mathematical Meaning 
Making and Reasoning: the reliability of different combinations of 
raters and lessons.
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contrast, watching only the first 30 minutes of the lesson yields 
notably lower estimated reliabilities for SPMMR. Thus, the effect 
of this form of sampling appears to vary by dimension, at least for 
our instrument.

As noted above, it is also possible within the D-study frame-
work to determine the impact of different assumptions about the 
use of teacher scores. Above, we used the G-coefficient (r), which 
corresponds to relative decisions (e.g., rewarding the top 5%  
of teachers). If states and districts intend to use scores to make 
absolute decisions—for example, to hold teachers to certain ten-
ure criteria—the dependability coefficient (φ) should be used. 
For the same combination of lessons and raters, the absolute-
reliability estimates (φ) are lower than the relative-reliability esti-
mates reported above. For example, the three lessons–two raters 
combination yields estimated absolute reliabilities of 0.73, 0.62, 
and 0.60 for Richness, Errors and Imprecision, and SPMMR, 
respectively. To obtain estimates equal to those reported above for 
relative decisions when the three lesson-two rater combination is 
used (r = 0.77, 0.71, and 0.81), at the minimum an additional 
rater would be required for the first two dimensions; at least three 
more raters per lesson and three more lessons per teacher would 
be needed for the latter dimension. This implies that when abso-
lute decisions need to be made, more lessons and/or raters are 
required to achieve similar reliabilities to those obtained for rela-
tive decisions. Given that findings from other major instruments 
are likely to be similar, we suspect that the use of these instru-
ments would best be limited to informing relative decisions in 
many locations.

Finally, G-studies and D-studies can provide additional infor-
mation about proposed uses of the instrument. For instance, in 

future analyses we will conduct G-studies that compare the per-
formance of the MQI for live and taped mathematics lessons. 
One could also examine whether an instrument intended for use 
across all academic subjects performs equally well on reading, 
mathematics, and science, holding other elements of the scoring 
design constant. Instrument developers may also be interested in 
the differences in score characteristics between rater pools con-
structed solely of specially recruited, trained, and certified indi-
viduals versus a system in which all principals are trained and 
then allowed to conduct teacher evaluations. Finally, in practice, 
some states might wish to design a “triage” system in which the 
majority of teachers are measured at relatively low reliability but 
a few (e.g., those flagged during routine evaluations, those with 
low value-added scores, those who are novices) are measured with 
more observations and much higher target reliabilities. D-studies 
can help determine the design of such a system.

Conclusion

This article highlights issues related to the development and use 
of observational evaluation systems, particularly those that will 
contribute to high-stakes decisions about teachers. The empiri-
cal findings from this study are limited to the instrument in 
question; there is no optimal number of observations or raters 
that transcends specific instruments and rater populations, and 
we caution against extrapolating our results to other observa-
tional instruments and scoring designs. That said, we think this 
analysis holds several important lessons that are applicable across 
instrument types and state settings. First, we argue that, contrary 
to common practice, it is misleading to talk about the reliability 
of specific instruments; instead, reliability inheres in the joint 

Table 4
Comparison of the Reliability Estimates (r) for Different Combinations of Raters and Lessons for the Whole Lesson 

and the First 30 Minutes of a Lesson

Richness Errors and Imprecision
Student Participation in  

Meaning Making and Reasoning

Number of Lessons 
and Raters Whole Lesson 30 Minutes Whole Lesson 30 Minutes Whole Lesson 30 Minutes

One lesson
 1 rater 0.45 0.50 0.37 0.34 0.46 0.32
 2 raters 0.58 0.59 0.50 0.46 0.59 0.41
 3 raters 0.64 0.63 0.57 0.53 0.65 0.45
 4 raters 0.67 0.65 0.61 0.57 0.68 0.48
Two lessons
 1 rater 0.59 0.65 0.51 0.49 0.63 0.49
 2 raters 0.71 0.73 0.64 0.62 0.74 0.58
 3 raters 0.76 0.77 0.71 0.68 0.79 0.62
 4 raters 0.79 0.78 0.74 0.71 0.81 0.65
Three lessons
 1 rater 0.66 0.73 0.58 0.57 0.72 0.59
 2 raters 0.77 0.80 0.71 0.70 0.81 0.68
 3 raters 0.81 0.83 0.77 0.75 0.85 0.71
 4 raters 0.84 0.84 0.80 0.78 0.87 0.73
Four lessons
 1 rater 0.69 0.77 0.63 0.63 0.77 0.66
 2 raters 0.80 0.83 0.75 0.74 0.85 0.74
 3 raters 0.84 0.86 0.81 0.79 0.88 0.77
 4 raters 0.86 0.87 0.83 0.82 0.90 0.78
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combination of instruments, rater training and certification sys-
tems, and specific scoring designs that constitute an observa-
tional system. Second, our analysis demonstrates empirically the 
hazard of using a common metric—80% interrater agreement—
as a sole measure of the reliability of a classroom observation 
system. Some items below this threshold performed well in our 
G-study analysis, whereas other items that met this threshold 
performed poorly. Third, although reaching high rater agree-
ment levels for such items is clearly preferable, it may not be 
feasible for some complex performance arenas within teaching, 
nor should it be used as the sole criterion for determining score 
reliability, as our findings clearly show. For all these reasons, we 
consider generalizability theory to be a significant asset in the 
development of observational systems.

We also demonstrated that once an instrument has been writ-
ten, developers and users have many more components to which 
they must attend, such as identifying a data collection and scor-
ing design and improving the instrument via better rater training 
and/or item design. Our communications with state education 
officials suggest that decisions about these observational system 
elements are more often informed by established norms or per-
sonnel limitations than by an understanding of how they impact 
the reliability of teacher scores (see Hill & Herlihy, 2011). 
Continued improvement and winnowing of productive and non-
productive items also are critical even after the start of official use 
of the instrument with teachers.

Finally, we note that developing reliable and litigation-proof 
observational systems takes time, expertise, and generous finan-
cial resources. Given that the United States is moving toward 
national standards for content and curriculum, and given that 
there is little reason to believe that the basics of good teaching 
vary greatly from Mississippi to New York, we argue for focusing 
national efforts on developing a set of carefully tested classroom 
observation systems. By doing so, we could have confidence that 
the scores and instructional feedback derived from observational 
systems will become trusted inputs in teacher development and 
teacher evaluation systems.

Appendix

Richness of the Mathematics: This dimension captures the 
depth of the mathematics offered to students. Rich mathemat-
ics focus either on the meaning of facts and procedures or on 
key mathematical practices. The dimension consists of the fol-
lowing items:

· Representations: A representation is typically a visual or verbal 
display of quantitative information that expresses the math-
ematical concept at hand using a medium other than num-
bers and symbols.

· Explanations: Giving mathematical meaning to ideas, proce-
dures, steps, or solution methods.

· Multiple procedures or solution methods: Considering multiple 
solution methods or procedures for a single problem.

· Developing generalizations: Using specific examples to develop 
generalizations of mathematical facts or procedures.

· Mathematical language: Using dense and precise language flu-
ently and consistently during the lesson.

Errors and Imprecision: This dimension is intended to capture 
teacher errors or imprecision of language and notation, uncor-
rected student errors, or the lack of clarity/precision in the teach-
er’s presentation of the content. This dimension consists of the 
following items:

· Major mathematical errors or serious mathematical oversights 
(e.g., solving problems incorrectly, defining terms incorrectly, 
forgetting a key condition in a definition; equating two non-
identical mathematical terms).

· Imprecision in language or notation: imprecision in use of 
mathematical symbols (notation), use of technical mathe-
matical language, and use of general language when discuss-
ing mathematical ideas.

· Lack of clarity in teachers’ launching of tasks or presentation 
of the content.

Student Participation in Meaning Making and Reasoning:  
This dimension captures evidence of students’ involvement in 
cognitively activating classroom work and the extent to which 
students participate in and contribute to meaning making and 
reasoning. Attention here focuses on student participation in 
activities such as:

· Providing explanations (e.g., students explain mathematical 
methods or ideas).

· Posing mathematically motivated questions or offering mathe-
matical claims or counterclaims (e.g., asking why a mathemat-
ical procedure works).

· Engaging in reasoning and cognitively demanding activities 
(e.g., drawing connections among different representations, 
concepts, or solution methods; identifying and explaining 
patterns).  
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& 0918383), and the Bill and Melinda Gates Foundation. We would 
like to thank three anonymous reviewers for constructive comments on 
earlier versions of this manuscript.

1An important issue is that using principals to conduct teacher obser-
vations means that there typically is no overlap between Principal A and 
Principal B in teachers observed. Without being able to compare princi-
pals’ ratings for the same teachers, it is impossible to isolate the rating 
tendencies of a principal (e.g., an overall tendency toward harshness) 
from a true measure of teaching quality. This means that any compari-
sons of teachers based on principal ratings only hold within schools—that 
is, two teachers with the same scores in different schools cannot be 
assumed to provide equivalent-quality instruction because their scores 
cannot directly be compared.

2We characterize an item as a prompt for a rater to assign a score; 
indicators are typically a list of activities that fall under each item. 
Although each instrument uses its own language to describe indicators 
and items, we standardize them here for ease of use.

3We argue that in order to take into account the way diverse lesson 
content and curriculum materials influence scores, averaging across 
items is necessary. By way of illustration, a lesson that requires using 
manipulatives to give meaning to a mathematical operation (e.g., using 
colored chips to help students understand integer subtraction) lends 
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itself better to engaging in activities such as employing representations 
and providing explanations; in contrast, a lesson involving a rich math-
ematical problem that admits different solution approaches allows for 
more work around considering and discussing multiple solution paths. 
Although the specific teacher behaviors in these two lessons might be 
different, both lessons feature elements of rich instruction.

4We calculated the variance components shown in Tables 1–3 using 
ANOVA in SPSS (for a fully crossed design) and then employed 
Brennan’s (2001, Chapter 1) formulas to calculate the respective compo-
nents for a partially nested design. For the meaning of the different vari-
ance components involved in this design, see Shavelson and Webb 
(1991, pp. 52–54) and substitute “occasions” with “lessons.”
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